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Room-temperature ionic liquids (RTIL) are offering ‘green’ alternatives to organic solvents
in industrial processes. Therefore, we propose here, with n-alkyl chain length as the focus,
some inter-relationships involving transport as well as thermodynamic properties.
Experimental work is suggested to examine whether (a) extended defect models of melting
are useful for RTIL and (b) the product of surface tension and isothermal compressibility,
which has the dimensions of length, varies systematically with the choice of anions as well as
with the number of carbon atoms in the n-alkyl chain.

Keywords: Ionic liquids; Transport; Surface tension; Compressibility; Shear modulus

The development of ‘green’ technologies has proliferated due to the promise of room-
temperature ionic liquids (RTIL). While much of the recent work with RTIL as solvents
has been directed toward the application of N-alkylpyridinium or 1,3-dialkylimidazol-
ium salts, it is well recognized that variations in both cation and anion choices can be
used to arrive at favorable solvent properties [1–8].

With the above motivation, we shall in this article make some proposals which could
lead to the demonstration of useful relationships of physical and chemical properties,
both for non-equilibrium properties, such as diffusion and viscosity, and for
equilibrium thermodynamic quantities such as (a) critical constants Tc, Vc and pc and
(b) surface tension, to take but two examples. We shall find it useful to consider,
in this approach, the length of the linear alkyl chain as an independent variable
(the number n of carbon atoms in the n-alkyl group R) for choices of different
anions (e.g., BF�4 and PF�6 ) of 1-R-3-methylimidazolium salts.
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Thus, in figure 1, we have combined into one figure the results of Holbrey and
Seddon [8] for the melting temperature Tm of the above salts with these two different
anions. There is a similarity as the anion is changed, and in particular the low melting
point, rather flat, regions are relatively insensitive to the change in anion. It would,
of course, for the future, be interesting to see how further changes in anion choice
affects the low-temperature region.

In connection with this regime, it is relevant here to refer to recent work [9] on the
n-alkanes in which melting temperatures were already studied phenomenologically as
a function of chain length. This prompts the suggestion regarding figure 1 that here,
in comparison with the n-alkanes, the rather constant low-temperature region is in
fact approaching the ‘saturation’ or infinite chain length limit. However, it is
tempting to propose that at both ends of the ‘constant’ Tm regimes in figure 1 there
are ‘crossovers’ to other types of phase behavior.

Turning to other physical and chemical properties of 1-alkyl-3-methylimidazolium
salts, we next draw attention to the important experimental study of bis(trifluoro-
methane sulfonyl)imides presented by Tokuda et al. [10, figure 8] which has been
converted by us by redrawing their data for transport coefficients for mass
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Figure 1. Melting points (�C) vs. the linear-alkyl chain length (where n is the number of carbon atoms
in the alkyl group R) of the 1-R-3-methylimidazolium cation (Rmim). Continuous lines refer to the
hexafluorophosphate anion. Dashed lines denote data for the tetrafluoroborate anion.
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(D in figure 2a) and momentum (viscosity � in figure 2b): we have also plotted D/T
versus ��1 in figure 2(c), as is motivated by the Stokes–Einstein relation, which reads:

D ¼ kBT=c��rS ð1Þ

where kBT is the thermal energy corresponding to the absolute temperature (assumed
to be 300K), c is a constant, while rS denotes the effective hydrodynamic Stokes
radius. Measurements of transport properties as a function of the nature of
the anion (in addition to the length of the alkyl chain) have been reported by
Every et al. [11].

We next consider some models which result in predictions of inter-relationships
between thermodynamic quantities. Let us start with surface tension � on which
some measurements exist for low melting point ionic liquids [12,13].
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Figure 2. Transport coefficients for some RTILs. (a): diffusion coefficient D as a function of chain
length (n). (b): viscosity (�) as it varies with chain length (n). (c): D/T vs. ��1 showing approximate validity
of Stokes–Einstein relation (equation (1)) with the variation of the Stokes radius.
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Going back to Frenkel, but especially emphasized by Egelstaff and Widom [14] for
simple liquids and by Freeman and March [15] for organic species, the product (l)
of � and isothermal compressibility KT is readily shown to have dimensions of
length. Then,

�KT � l, ð2Þ

and l is a fraction of an Å (Angström) for both simple liquids [15] and a whole variety
of organic liquids. If measurements of KT become available, either in the crystalline
phase just below Tm, or in the liquid phase just above Tm, we believe it is of interest
to find: (i) how l depends on the n-alkyl chain length and (ii) how anionic species
affect this ‘characteristic length’.

The second ‘model’ we appeal to is a dislocation-mediated mechanism of melting.
Interest in such a model, which goes back to work associated with the names of
Kuhlmann-Wilsdorf and Cotterill, has been reopened recently by Burakovsky et al.
[16,17] and by Kleinert and Jiang [18]. Both groups of authors, when their treatments
are applied to transition metals such as tungsten and nickel, are led to a result, as
stressed by Matthai and March [19] having the general shape

kBTm ¼ �FS, ð3Þ

where F is a function of the elastic constants. In the monatomic d-electron metals
considered in refs. [16–19], S is a structure-dependent factor, which is therefore different
for body-centered-cubic (bcc) W and face-centered-cubic (fcc) Ni, while � denotes the
atomic volume. Matthai and March [19] appeal to the simplest form of the function F
given in [16–19] to reach the result

kBTm ¼ �GS, ð4Þ

where G is the shear modulus of the solid at Tm. In the transition metals, one has
Sfcc/Sbcc� 5/7, so that S appears to be not very sensitive to structure.

Though some workers (see, for example [20]) have given attention to the crystal
structure into which certain liquids freeze, we have not, to date, found experimental
values for the shear modulus G. We believe it would be valuable to test whether
equation (4) is useful in the case of low-melting point ionic liquids, when the atomic
volume � appropriate to the transition metals is replaced by a molecular volume.
Comparison then, using measured data for the latter volume plus shear modulus
data, could be made with figure 1 to test, and if necessary to refine, equation (4).

In conclusion, self-diffusion and viscosity coefficients in some selected RTILs shown
in figures 2(a) and 2(b), respectively, at around room temperature, show features
depending on the n-alkyl chain length which, however, approximately compensate to
allow the approximate validity of the Stokes–Einstein relation (1), when any variation
of the hydrodynamic radius with chain length is neglected. Finally, two further
relations, which are useful in monatomic liquids, are proposed as worthy of experi-
mental test in RTIL. These are (i) the microscopic length l defined in equation (2),
and its possible dependence on (a) the chosen anion and (b) the alkyl chain length;
and (ii) the proposed relation of the melting temperature data depicted in figure 1
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to the shear modulus of the associated crystals near their melting temperature.
Regularities in the latent heat in relation to molecular volume and/or shear modulus
seem also worthy of experimental study.
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